文章编号: 0258-7025(2009)Supplement 1-0151-05

# 基于激光热应力的软质涂层结合强度表征与测试

孔德军1 罗开玉2 张雷洪3 宋广山4

<sup>1</sup>江苏工业学院低维材料微纳器件与系统研究中心,江苏常州 213016;<sup>2</sup>江苏大学机械工程学院,江苏镇江 212013 <sup>3</sup>上海工程技术大学机械工程学院,上海 201620;<sup>4</sup>江苏省镇江市出入境检验检疫局,江苏镇江 212013

**摘要** 利用激光热应力效应建立了一种检测软质涂层结合强度的装置,分析了激光热应力作用下残余应力表征涂 层界面结合强度的原理与方法,可对软质涂层进行检测。结果表明,激光热应力作用下涂层残余应力发生变化,可 用节点残余应力作为界面结合状况的检测信号来表征界面结合强度;激光热应力检测软质涂层界面结合强度方法 可替代传统拉伸法,实现实时在线检测涂层界面结合强度。

关键词 激光技术;激光热应力;结合强度;涂层;残余应力

中图分类号 TG174.44; TN249 文献标识码 A doi: 10.3788/CJL200936s1.0151

# Characterization and Measurement of Bonding Strength of Soft Coating Based on Laser Thermal Stress

Kong Dejun<sup>1</sup> Luo Kaiyu<sup>2</sup> Zhang Leihong<sup>3</sup> Song Guangshan<sup>4</sup>

<sup>1</sup>Research Center of Low-Dimension Material, Micro/Nano Device and System, Jiangsu Polytechnic University, Changzhou, Jiangsu 213016, China

<sup>2</sup> School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

<sup>3</sup> College of Mechanical Engineering, Shanghai University of engineering Science, Shanghai 201620, China

<sup>4</sup> Zhenjiang Entry-Exit Inspection and Quarantine Bureau, Zhenjiang, Jiangsu 212013, China

**Abstract** A device measuring bonding strength of soft coating based on laser thermal effect was established, and the mechanism and method for characterizing interfacial bonding strength of coating by residual stress under laser action were analyzed, which is suited for measuring bonding strength of soft coating. The experimental results show that residual stresses of the coating are changed under laser thermal stress, and residual stress in the node can be used to measure the interfacial bonding strength of the coating. Tradition pulling method can be replaced by the method of coating interfacial bonding strength with laser thermal stress, and the real time measurement of coating bonding strength was realized in the real-time way.

Key words laser technique; laser thermal stress; bonding strength; coating; residual stress

# 1 引 言

涂层技术是提高材料表面性能的重要手段之一,可使零件和构件表面耐磨、耐腐蚀、耐热、耐疲 劳、耐辐射、产生光、热、电、磁等特殊性能<sup>11</sup>。残余 应力是涂层制备过程中存在的普遍现象,是影响涂 层与基体结合强度的主要因素之一。残余应力的存 在可能使涂层产生裂纹,因此控制涂层残余应力是 一个重要的研究课题<sup>[2]</sup>。由于涂层和基体的热膨胀 系数不同,在冷却或交变温度的作用下,两者的变形 量不同,这样会在涂层结合界面产生很大应力,如果 涂层较厚,沿其厚度方向的温度梯度较大,还会在涂 层内形成较大的残余内应力<sup>[3]</sup>。当残余应力超过了 涂层的强度极限时,涂层就会发生屈服甚至脱落失 效,影响其使用寿命。目前已经提出的检测涂层界 面结合性能的方法主要有激光层裂法、划痕法、压痕 法、界面压入法等<sup>[4]</sup>,但这些方法测量数据可重复性 差,至今尚未发现一种普遍公认的涂层界面结合强 度检测技术。本文提出基于激光热应力效应的涂层 界面结合强度检测方法,即界面残余应力检测的激 光热应力技术,实现涂层界面结合强度的精确测量。

基金项目: 江苏省高校自然科学基础研究项目(08KJB430002)、江苏省高校青蓝工程科技创新团队项目(2008-04)、江苏 出入境检验检疫局项目(2008KJ10)和江苏工业学院科研基金(IMF07020042)资助课题。

作者简介:孔德军(1966一),博士,主要从事激光加工与 XRD 检测技术方面的研究。E-mail: kong-dejun@163.com

利用激光热应力效应对涂层表面进行辐射扫描,通 过 X 射线衍射 sin<sup>2</sup> ψ 法测定涂层残余应力,测试涂 层失效时残余应力的变化规律,并对残余应力产生 的机理进行初步讨论,提出了软质涂层结合强度的 表征方法。

### 2 实验方法

将激光直接入射到涂层表面,对涂层表面进行 准静态加热,在涂层-基体系统中形成温度场和应力 场。由于涂层-基体材料热膨胀系数的不同,在涂层 界面中形成热应力,当热应力达到一定值时,涂层材 料产生脱粘,进一步发生界面裂纹扩展、脱粘层失 稳,裂纹萌生与扩展,直至脱粘层剥落失效。如图1 (a)~(e)所示<sup>[5]</sup>。当激光辐射涂层表面时,热应力 透过涂层界面到达基体表面,涂层产生断裂。当断 裂现象发生在涂层-基体界面结合处时,断裂强度即 为涂层-基体结合强度,用涂层界面破坏时检测到的 残余应力的变化值来表征涂层-基体界面结合强度。



图 1 涂层失效过程示意图。(a) 脱粘;(b) 裂纹扩展;(c) 弹性失稳翘曲;(d) 贯穿裂纹萌生与扩展;(e) 断裂剥落 Fig. 1 Sketch of coating failure process。(a) Pulling off; (b) crack expansion; (c) crack unsteadying; (d) crack production and expansion; (e) rupture

实验装置如图 2 所示,利用激光对涂层表面进 行扫描处理,并通过调节激光输出功率、光斑直径和 扫描速度控制输入到涂层的能量。激光束经抛物面 反射聚焦镜聚焦后形成均匀光束,具有多模式光斑。



图 2 检测系统装置 Fig. 2 Device of detecting system

通过调整聚焦镜与工件间距来调整光斑直径。激光 波长为1.06 μm,自动监控功率不稳定度为±1%, 进行直线激光扫描处理。在热应力的作用下,涂层 缺陷处产生应力集中,引发裂纹,然后裂纹在外加热 应力的继续作用下扩展,当裂纹彼此之间相互连通 时,涂层产生断裂。X 射线应力分析仪检测涂层应 力参数,并将该参数输入信号分析处理系统,判断涂 层-基体系统界面破坏的临界点。

## 3 分析与讨论

光

#### 3.1 激光热应力

当激光强度为  $I = I_0 \exp\left(-\frac{r^2}{d^2}\right)$ 的高斯光束时, 其在空间上轴对称分布。由于温度梯度的存在,在 试样的轴向和径向产生热传导。设表面吸收系数为  $k_0$ ,初始温度为室温 20 °C。探求时间 t 的涂层温度  $\tau(r,z,t)$ 。其数学模型<sup>[2,6]</sup>为

$$\begin{cases} \frac{\partial \tau}{\partial r} = x^2 \Delta \tau, \ x^2 = \frac{k}{cp}, \\ \frac{\partial \tau}{\partial z} \Big|_{z=0} = -\frac{k_0}{k} I_0 \exp\left(-\frac{r^2}{d^2}\right), \\ \frac{\partial \tau}{\partial z} \Big|_{z=l} = 20, \ \frac{\partial \tau}{\partial r} \Big|_{r=a} = 0, \tau \Big|_{r=0} = 0, \end{cases}$$
(1)

式中  $\Delta = \bigtriangledown_2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}; a$  为试样半径; *l* 为 涂层厚度; *k*<sub>0</sub> 为表面吸收系数; *c* 为比热; *k* 为导热 系数; *ρ* 为圆柱体密度。

由此产生的热应力[2,6,7]为

$$\sigma_{0} = \frac{aE_{n}I_{0}}{\rho c_{p}} \times \left\{ \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \omega_{m}(b)R_{n}(z)s_{mn}(t) \times \left[ J_{1}\left(\frac{um^{r}}{b}\right) \frac{b}{um^{r}} - J_{0}\left(\frac{u_{m}^{r}}{b}\right) \right] \right\}, \qquad (2)$$

其中

$$\begin{cases} \omega_{m}(b) = \frac{2}{b^{2} J_{0}(\omega_{m})} \frac{a^{2}}{2} \Big[ 1 - \exp\left(\frac{-b^{2}}{a^{2}}\right) \Big],\\ m = 0\\ \left(\frac{b}{\mu_{m}}\right)^{2} \sum_{i=0}^{\infty} \sum_{j=0}^{i} \frac{(-2)^{j} \left(-\frac{b^{2}}{\mu_{m}^{2}a^{2}}\right)^{i} \mu_{m}^{2i+1-j} J_{j+1}(\mu_{m})}{(i-j)!},\\ m \neq 0 \end{cases}$$
(3)

$$R_n(z) = \frac{(-\beta z)^n}{n!},\tag{4}$$

$$S_{mn}(t) = \frac{1 - \exp\{-Dt \left[ (\mu_m/b)^2 + (n\pi/h)^2 \right] \right\}}{Dt \left[ (\mu_m/b)^2 + (n\pi/h)^2 \right]},$$

式中 b 为试样半径; $\rho$  为材料密度; $\beta$  为吸收系数; $c_p$  为定压比热; $D = \lambda_t / \rho c_p$ ; $\mu_m$  为第一类一阶 Bessel 函数的根,m = 0, 1, 2, 3······

涂层界面结合强度的激光热效应检测方法综合 了传统划痕试验法和激光检测技术,以激光非接触 作用于涂层表面,用X射线衍射技术测得界面结合 强度,这与涂层-基体系统静态准静态工作环境基本 一致。在激光作用过程中,通过持续增加激光能量 或减速进给运动使激光能量逐步加载。这样使每个 激光作用时刻的涂层-基体系统状况相同,可较全面 地反映不同激光能量作用下的表面涂层破坏状况。 X射线衍射法是测定涂层残余应力最可靠的方法之 一,其基本原理是多晶材料存在残余应力时,应力作 用使晶面间距发生变化,相应的衍射峰也将产生位 移。从弹性力学与X衍射理论可以推出残余应 力<sup>[8]</sup>为

$$\sigma_{f} = \left[\frac{-E}{2(1+\gamma)}\right] \left(\frac{1}{\tan\theta_{0}}\right) \left(\frac{\pi}{180}\right) \left[\frac{\partial(2\theta)}{\partial(\sin^{2}\varphi)}\right] - K\left[\frac{\partial(2\theta)}{\partial(\sin^{2}\varphi)}\right], \tag{6}$$

式中 E 为弹性模量; $\gamma$  为泊松比; $\theta$ 。为材料无应力状态时特定晶面衍射角; $\theta$  为与入射线成 $\phi$  角的晶面衍射角;K 为 sin<sup>2</sup> $\phi$ 法中 X 射线应力常数; $\phi$  为试样表面法线与衍射晶面法线夹角。

#### 3.2 界面失效与表征

激光对涂层表面准静态加热时,由于热传导的 作用,其结果表现为在涂层-基体系统中形成温度场 和应力场,涂层材料受热膨胀的同时,又受到其周围 涂层和基体材料的限制,因此,在涂层-基体中形成 压应力。由于涂层-基体材料热膨胀系数和温度场 的不同导致涂层界面应变场差异,引起涂层界面材 料产生位错、滑移等晶格缺陷,使得其结合界面成为 涂层-基体系统最薄弱环节。当涂层-基体结合界面 应力达到一定值时,将首先在界面产生裂纹萌生,如 图 3 所示。

在激光作用产生的压应力作用下,结合界面裂 纹进一步扩展,涂层产生脱粘现象。随着激光持续 作用,涂层进一步脱粘,其尺寸逐渐扩大。激光作用 下的涂层温度场在其厚度方向表现为梯度分布,即 涂层表面温度最高,受热应力的影响最大,其变形量 也是最大;涂层界面脱粘层处温度较低,受热应力的 影响较小,其变形量也小,这样脱粘层会失稳。当满 足临界条件时,脱粘层发生弹性失稳翘曲,在其结合 界面产生应力集中,裂纹迅速扩展。当脱粘层扩展



图 3 激光作用下涂层温度场(a)和应力场(b)变化规律

Fig. 3 Change laws of coating temperature field (a) and residual stress field (b) under laser action

到萌生贯穿裂纹时,贯穿裂纹进一步扩展,最后脱粘 层剥落,导致涂层破坏。

#### 3.3 残余应力

涂层残余应力测量原理:应力的存在引起晶格 畸变,使得晶格常数发生变化,根据 Bragg 衍射公式

$$2d \sin \theta = \lambda, \qquad (7)$$

确定涂层的晶面间距,则涂层应力<sup>[8]</sup>为

$$\sigma = \frac{E}{2\mu} \varepsilon = \frac{E}{2\mu} \frac{d_{\circ} - d}{d}, \qquad (8)$$

式中 E 为涂层材料杨氏模量;µ 为涂层泊松比;ε 为涂 层应变;d<sub>0</sub> 为标准晶面间距;d 为所测试晶面间距。

涂层界面残余应力由两部分组成:1)由于基体与 涂层热膨胀系数差异,使涂层从高温冷却到室温时产 生热应力;2)非热影响产生的本征应力(或内应力)。 由于涂层残余应力存在,加速了涂层内热力偶合作 用,使其成为涂层破坏的敏感因素。涂层中残余应力 是涂层生长过程和存放环境条件共同作用的结果,其 性质和大小与基体和涂层材料、沉积技术、沉积条件 以及后处理工艺等密切相关。由于涂层与基体热膨 胀系数存在差别而使涂层部产生残余应力<sup>[9]</sup>

$$\sigma_{\rm th} = \frac{E_{\rm c}}{1-\mu_{\rm c}} (\alpha_{\rm c} - \alpha_{\rm s}) (T_{\rm c} - T_{\rm o}), \qquad (9)$$

式中 *E*<sub>c</sub>, *µ*<sub>c</sub> 分别为涂层杨氏模量和泊松比; *α*<sub>c</sub>, *α*<sub>s</sub> 分 别为涂层和基体热膨胀系数; *T*<sub>c</sub>, *T*<sub>0</sub> 分别为涂层制 备时温度和测量时温度。

本征应力最大值[10]为

(10)

光

中

卷

 $\sigma_{\rm in} = C E_{\rm c} \alpha_{\rm c} \left( T_{\rm cm} - T_{\rm s} \right)$ 

涂层残余应力为涂层热应力与基体热应力叠 加,即

$$\sigma = \sigma_{\rm th} + \sigma_{\rm in}. \tag{11}$$

涂层和基体热膨胀系数的差值导致涂层内部热 应力很大,从而使涂层与基体结合强度大大降低。 当热应力超过涂层结合强度时,涂层脱落。这表明 合理选择涂层的组成,是控制涂层内部热应力大小 的关键所在。

#### 3.4 结合强度

Account points

在激光热应力作下,涂层-基体系统经历脱粘、 脱粘层弹性失稳、界面裂纹扩展、贯穿裂纹扩展和脱 粘层断裂与剥落等过程,其激光作用的节点残余应 力发生相应的变化。在脱粘层失稳时,中心节点残

3000 (a) 2700 274.5 ± 10.2 MP 162. 2400 2100 161 points 1800 160. 1500 Account 1200 900 600 300 168 166 164 162160 158 156Scanning scope of  $2\theta$  /(°)

余应力发生突变,以此时残余应力作为涂层界面结 合强度检测信号,以残余应力值发生突变的点作为 界面破坏临界点,采用此刻所对应残余应的力变化 量表征涂层界面结合强度,即

$$\sigma = \sigma_{\rm P} - \sigma_{\rm U}, \qquad (12)$$

式中 σ<sub>P</sub>, σ<sub>U</sub> 分别为原始状态涂层与激光作用下涂层 失稳时所测试的残余应力。

实验用图 2 所示装置对真空镀铝涂层进行测 试,在激光功率为800 kW时,X 射线衍射测试技术 参数为:管电压22 kV,管电流6 mA,铬靶  $K_a$ 特征 辐射,准直管直径2 mm,阶梯扫描步进角 0.1°,时间 常数1 s,扫描起始角及终止角分别为 168°和 155°, 侧倾角  $\Psi$ 分别取 0°,15°,30°和 45°。选用镀铝涂层 晶面(222)为衍射面,测试的残余应力结果如图 4 所 示, $\sigma_P = -274.5$  MPa, $\sigma_U = -300.6$  MPa,代入式 (12),得镀铝涂层结合强度  $\sigma = 26.1$  MPa。



#### 图 4 残余应力测试结果

Fig. 4 The measured results of coating residual stress. (a) Residual stress of center node in primitive state; (b) residual stress of center node as pulling off under laser function

### 4 结 论

 1)激光热应力作用下软质涂层发生脱粘、界面 裂纹扩展、脱粘层失稳、贯穿裂纹萌生与扩展、脱粘 层断裂与剥落等阶段。

2)激光热效应力作用下涂层-基体失效各阶段 节点其残余应力发生突变,用突变节点残余应力作 为界面结合状况的检测信号表征界面结合强度。

3) 热应力对涂层-基体结合强度有明显的影响,
 当热应力超过涂层结合强度时,涂层发生脱落失效。

#### 参考文献

1 Yang Banquan, Chen Guangnan, Zhang Kun *et al.*. A review on measurement methods for interfacial bonding strength between

coating and substrate [J]. Advances in Mechanics , 2007 ,  $\mathbf{37}(1)$  :  $67\!\sim\!79$ 

杨班权,陈光南,张 坤 等. 涂层/基体材料界面结合强度测量 方法的现状与展望[J]. 力学进展, 2007, **37**(1): 67~79

2 Yin Sumin, Cheng Chang, Feng Aixin *et al.*. Testing method of the laser scratching based on image acquisition system [J]. *Chinese J. Lasers*, 2008, **35**(6): 947~951

股苏民,程 昌,冯爱新等.界面结合强度的激光划痕综合检测 装置的设计[J].中国激光,2008,**35**(6):947~951

- 3 Cui Xuejun, Cheng Ping, Zhang Haitao et al.. Finite element simulation of a test model for interface bonding strength between coating and substrate [J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2): 357~361 崔学军,程 平,张海涛等. 涂层与基体界面结合强度测定模型 的有限元模拟[J]. 吉林大学学报(工学版), 2007, 37(2): 357~ 361
- 4 Hou Zhende, Tang Lingxia, Fu Donghui et al.. Measurement of bond strength of coating using stress wave [J]. Acta Armamentarii, 2006, 27(2): 306-309

侯振德,汤灵霞,富东慧等.利用应力波测量涂层的结合强度 [J]. 兵工学报,2006,27(2):306~309

- 5 Pang Yingchun, Tao Jie, Zhang Shu et al.. Interfacial bonding strength of epoxy coating on pure titanium substrate [J]. Ordnance Material Science and Engineering, 2007, 30(1): 59~62
- 庞迎春,陶 杰,张 舒等. 纯钛基材上环氧基涂层界面结合强度的研究[J]. 兵器材料科学与エ程, 2007, 30(1): 59~62
- 6 Luo Qiang, Ren Qingli. Analysis of the temperature rise and the thermal stress which produced by Gauss laser radiated on an end of the cylinder [J]. Structure & Environment Engineering, 2001, 28(3): 14~21

罗 强,任庆利.高斯激光束照射圆柱体-端面上引起温升和热应力的分析[J].强度与环境,2001,28(3):14~21

7 Zhang Jianquan, Luo Qiang, Liu Feng *et al.*. The distribution of the thermal stress in the cylinder produced by the laser radiation [J]. *Chinese Journal of Applied Mechanics*, 1999, 16(4): 123~129

张建泉,罗强,刘锋等.激光照射圆柱体产生热应力的分布

- [J]. 应用力学学报, 1999, 16(4): 123~129
- 8 Du Shaojun, Lu Qisheng, Shu Bohong. Calculation of laserinduced temperature increment and thermal stress of Al-film reflector [J]. Infrared and Laser Engineering, 2001, 30(2): 128~131

杜少军,陆启生,舒柏宏.激光辐照下铝膜反射镜温升和热应力的计算[J]. 红外与激光工程,2001,**30**(2):128~131

9 Kong Dejun, Zhang Yongkang, Chen Zhigang et al.. Experimental study of residual stress of galvanized passive film based on XRD [J]. Acta Physica Sinica, 2007, 56(7): 4056~ 4061

孔德军,张永康,陈志刚等.基于 XRD 的镀锌钝化膜残余应力 试验研究[J].物理学报,2007,56(7):4056~4061

10 Ma Wei, Pan Wenxia, Zhang Wenhong et al.. A review of researches on the residual stress in thermal spray coatings [J]. Advances in Mechanics, 2002, 32(1): 41~56
马维,潘文霞,张文宏等. 热喷涂涂层中残余应力分析和检测研究进展[J]. 力学进展, 2002, 32(1): 41~56